Theoretical efficiency of a new inexact method of tangent hyperbolas

نویسندگان

  • Naiyang Deng
  • Haibin Zhang
چکیده

In this article, we are concerned with the third-order methods [see e.g. Refs. 8,10]. Just as Newton method approximates the gradient of the objective function with a linear function with the same slope at the current iterate, the third-order methods approximate the gradient with a ‘parabola’ with the same slope and curvature at the current iterate. The most famous third-order method is the improved method of tangent hyperbolas (Algorithm IMTH): xk+1 = xk + s k + s k , (2)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An inexact alternating direction method with SQP regularization for the structured variational inequalities

In this paper, we propose an inexact alternating direction method with square quadratic proximal  (SQP) regularization for  the structured variational inequalities. The predictor is obtained via solving SQP system  approximately  under significantly  relaxed accuracy criterion  and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...

متن کامل

An improved inexact Newton method

For unconstrained optimization, an inexact Newton algorithm is proposed recently, in which the preconditioned conjugate gradient method is applied to solve the Newton equations. In this paper, we improve this algorithm by efficiently using automatic differentiation and establish a new inexact Newton algorithm. Based on the efficiency coefficient defined by Brent, a theoretical efficiency ratio ...

متن کامل

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

Optimality conditions for Pareto efficiency and proper ideal point in set-valued nonsmooth vector optimization using contingent cone

In this paper, we first present a new important property for Bouligand tangent cone (contingent cone) of a star-shaped set. We then establish optimality conditions for Pareto minima and proper ideal efficiencies in nonsmooth vector optimization problems by means of Bouligand tangent cone of image set, where the objective is generalized cone convex set-valued map, in general real normed spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optimization Methods and Software

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2004